Crystal Structure of $Na_2M_2(BO_3)_2O$ (M = AI, Ga); Comparison with Other Layered Oxyborates and SiP₂O₇

Gwenaël Corbel¹ and Marc Leblanc

Laboratoire des Fluorures, UPRES-A 6010, Université du Maine, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France

Received February 24, 2000; in revised form May 16, 2000; accepted June 16, 2000; published online September 30, 2000

A new oxyborate Na₂Ga₂(BO₃)₂O is evidenced. The mean crystal structure, determined by X-ray diffraction, is trigonal, space group *P*-31*c* (n°163), *Z* = 2, with *a* = 4.855(2) Å, *c* = 15.441(7) Å, *V* = 315.2(4) Å³, *R*₁ = 0.047, *wR*₂ = 0.123. The three-dimensional network is built up from the stacking, along the *c* axis, of infinite [NaGa₂B₂O₇]_{∞} sheets, separated by sodium layers. Na₂Al₂(BO₃)₂O is isostructural with Na₂Ga₂ (BO₃)₂O. Ionic conductivity is expected. © 2000 Academic Press.

Key Words: oxyborate; crystal structure; structural correlations.

INTRODUCTION

The polar orientation of BO_3^{3-} ions in crystals leads to noncentrosymmetric structures (1). This feature, combined with an excellent transparency in UV region and high polarizability, implies that borates are attractive candidates in the search of new nonlinear materials (2, 3). Consequently, the chemistry of borates, oxyborates, hydroxide borates, and fluoride borates has been reinvestigated during the past 10 years. The most interesting frequency doubling compounds are β -BaB₂O₄ (BBO) (4), LiB₃O₅ (LBO) (5), and YAl₃(BO₃)₄: Nd³⁺ (YAB) (6). A new caesium lithium borate was recently found, CsLiB₆O₁₀ (CLBO) (7), and is currently displacing BBO for UV generation. In 1996, G. Aka *et al.* obtained, by the Czochralski technique, large crystals of the acentric oxyborate Ca₄Gd(BO₃)₃O (GdCOB) (8), a promising self-doubling laser host.

We have undertaken the study of several mixed anionic systems. New structural families $Ln_3(BO_3)_2F_3$ (9), $Na_2Ln_2(BO_3)_2O$ (10) (Ln = Sm, Eu, and Gd) and a new nonlinear hydroxide borate $Zn_2(BO_3)(OH)_{0.75}F_{0.25}$ (11) are now evidenced. We have also investigated the $Na_2O-Ga_2O_3-B_2O_3$ system and crystals of $Na_2Ga_2(BO_3)_2O$ have been obtained. This phase was reported by Rza-Zade *et al.* (12) in 1971, but its structure was still unknown. This paper deals with the synthesis and the crystal structure of this oxyborate. Structural comparisons with other borates, $Sr_2Be_2(BO_3)_2O$ (SBBO) (13), $AAI_2(BO_3)_2O$ (A = Ca (14), Sr (15, 16), Ba (17)), and SiP_2O_7 (18), are also presented.

One of the referees made us aware of the crystal structure description of $Na_2Al_2(BO_3)_2O$ by K.S. Chang (Ph.D. dissertation, Oregon State University, 1998). This work was not published.

EXPERIMENTAL DETAILS

Crystals of Na₂ M_2 (BO₃)₂O (M = Al, Ga) grow from the stoichiometric mixture of 1Na₂CO₃, 1 M_2 O₃, and 1B₂O₃ in platinum tubes. This mixture is heated as follows: 7 h at 700°C (heating rate 2°C/min), 30 h at 1020 or 900°C (heating rate 0.5°C/min) respectively, and cooling at 0.1°C/min. A weight loss, corresponding to the departure of CO₂ from Na₂CO₃, is always observed. For Na₂Ga₂(BO₃)₂O, a small amount of impurity Ga₂O₃ can be detected on the X-ray powder diffraction pattern, recorded on a Siemens D501 diffractometer (CuK α radiation, room temperature).

Crystals of Na₂Ga₂(BO₃)₂O were selected by optical examination, and X-ray diffraction data (Table 1) were collected on a Siemens AED2 four-circle diffractometer. The conditions of intensity measurement are reported in Table 1. The unit cell and the space group were obtained from long-exposure rotation photographs. The scattering factors and anomalous dispersion corrections for all atoms were taken from the "International Tables for X-ray Crystallography" (19). Intensities were corrected for absorption with SHELX-76 (20). Structural calculations were performed with SHELXS-86 (21) and SHELXL-93 (22) programs. Structure projections were realized with the program Diamond (23).

It must be noted that the crystal quality is poor. At large diffraction 2θ angles, shoulders are observed on the peak profiles. This feature is probably significant of twinning and to the presence of several crystallites with a lower structural symmetry. The twinning plane was not determined and high-resolution synchrotron diffraction is needed in order to evidence the structural distorsion.

¹To whom correspondence should be addressed.

Four-circle diffractometerSiemens AED2Radiation, temperature $MoK\alpha, 293 \text{ K}$ Crystal dimensions (mm ³) $0.03 \times 0.21 \times 0.19$ Absorption $\mu = 86.5 \text{ cm}^{-1}$ A_{\min}, A_{max} $0.303, 0.734$ SymmetryTrigonalSpace group $P \cdot 31c$ (n°163) Z 2 Parameters a (Å) a (Å) 15.441 (7)Volume (Å ³) $315.2(4)$ Molecular weight 319.04 Calculated density (g/cm ³) $3.361(4)$ Secondary extinction factor $3.9(8) 10^{-5}$ Weighting scheme $k = 1$ $w = k/(\sigma^2(F^2) + (0.0719P)^2)$ Number of refined parameters 25 Max Δ/σ -0.001 Reliability factors R_1 ; wR_2 0.047 ; 0.123 Goodness-of-fit 1.19 Max, min heights in the final difference 27 (scans at $\pm \Theta$)Scan mode $\omega - 2\Theta$ in N steps of $\Delta\omega = 0.035^{\circ}$ $37 \le N \le 43$ Data collection range $2\Theta \le 70^{\circ}$ Aperture $4 \times 4 \text{ mm}^2$ Measured reflections 2598 Minimum h, k, l (2 independent sets) $77 \cdot 24$ Standard reflections $0.25; 2 - 25; 20 - 5$ Maximum standard intensity variation 3.0 Independent reflections ($I > 2\sigma(I)$) 436	Crystallographic Data and Conditions of Data Collection for Na ₂ Ga ₂ (BO ₃) ₂ O					
Radiation, temperatureMoK α , 293 KCrystal dimensions (mm³) $0.03 \times 0.21 \times 0.19$ Absorption $\mu = 86.5$ cm ⁻¹ A_{min} , A_{max} 0.303 , 0.734 SymmetryTrigonalSpace group P -31c (n°163)Z2Parameters a (Å) a (Å) $4.855(2)$ c (Å) $15.441(7)$ Volume (Å ³) $315.2(4)$ Molecular weight 319.04 Calculated density (g/cm ³) $3.361(4)$ Secondary extinction factor $3.9(8)$ 10^{-5} Weighting scheme $k = 1$ $w = k/(c^2(F^2) + (0.0719P)^2$ Number of refined parameters 25 Max Δ/σ -0.001 Reliability factors R_1 ; wR_2 0.047 ; 0.123 Goodness-of-fit 1.19 Max, min heights in the final difference 7 (scans at $\pm \Theta$)Scan mode $\omega - 2\Theta$ in N steps of $\Delta \omega = 0.035^{\circ}$ $37 \le N \le 43$ Data collection range $2\Theta \le 70^{\circ}$ Aperture $4 \times 4 mm^2$ Measured reflections 2598 Minimum h, k, l; $-7 - 7 - 24$;maximum h, k, l (2 independent sets) $77 24$ Standard reflections $0.25; 2 - 25; 2.0 - 5$ Maximu standard intensity variation 3.0 Independent reflections ($l > 2\sigma(I)$) 436 R_{int} 0.017	Four-circle diffractometer	Siemens AED2				
Crystal dimensions (mm³) $0.03 \times 0.21 \times 0.19$ $\mu = 86.5 \mathrm{cm}^{-1}$ $0.303, 0.734$ Absorption $\mu = 86.5 \mathrm{cm}^{-1}$ $0.303, 0.734$ SymmetryTrigonal 	Radiation, temperature	MoKα, 293 K				
Absorption $\mu = 86.5 \text{ cm}^{-1}$ A_{\min}, A_{\max} 0.303, 0.734SymmetryTrigonalSpace group $P-31c$ (n°163) Z 2Parameters a (Å) a (Å)4.855(2) c (Å)15.441(7)Volume (Å ³)315.2(4)Molecular weight319.04Calculated density (g/cm ³)3.361(4)Secondary extinction factor3.9(8) 10 ⁻⁵ Weighting scheme $k = 1$ $w = k/(\sigma^2(F^2) + (0.0719P)^2$ Number of refined parameters25Max Δ/σ -0.001 Reliability factors R_1 ; wR_2 0.047 ; 0.123 Goodness-of-fit1.19Max, min heights in the final difference $+ 2.6, -1.4$ Centering reflections ($2\Theta \approx 30^\circ$)27Reflections for refined cell parameters27 (scans at $\pm \Theta$)Scan mode $\omega - 2\Theta$ in N steps of $\Delta\omega = 0.035^\circ$ $37 \le N \le 43$ Data collection range $2\Theta \le 70^\circ$ Aperture $4 \times 4 \text{ mm}^2$ Measured reflections 2598 Minimum h, k, l ; $-7 - 7 - 24$;maximum h, k, l (2 independent sets) $77 24$ Standard reflections $(l > 2\sigma(l))$ 3.0 Independent reflections $(l > 2\sigma(l))$ 3.0	Crystal dimensions (mm ³)	$0.03 \times 0.21 \times 0.19$				
A_{\min}, A_{\max} 0.303, 0.734SymmetryTrigonalSpace group $P-31c (n^{\circ}163)$ Z 2Parameters $a (\mathring{A})$ $c (\mathring{A})$ $4.855(2)$ $c (\mathring{A})$ $15.441(7)$ Volume (\mathring{A}^3) $315.2(4)$ Molecular weight 319.04 Calculated density (g/cm ³) $3.361(4)$ Secondary extinction factor $3.9(8) 10^{-5}$ Weighting scheme $k = 1$ $w = k/(\sigma^2(F^2) + (0.0719P)^2)$ Number of refined parameters 25 Max Δ/σ -0.001 Reliability factors $R_1; wR_2$ $0.047; 0.123$ Goodness-of-fit 1.19 Max, min heights in the final difference $+ 2.6, -1.4$ Fourier map ($e\mathring{A}^{-3}$) $+ 2.6, -1.4$ Centering reflections ($2\Theta \approx 30^{\circ}$) 27 Reflections for refined cell parameters $20 \le 70^{\circ}$ Aperture $4 \times 4 \text{ mm}^2$ Measured reflections 2598 Minimum $h, k, l;$ $-7 - 7 - 24;$ maximum $h, k, l (2$ independent sets) $77 24$ Standard reflections $0.25; 2 - 25; 20 - 5$ Maximu standard intensity variation 3.0 Independent reflections ($l > 2\sigma(l)$) 436	Absorption	$\mu = 86.5 \text{ cm}^{-1}$				
SymmetryTrigonalSpace group $P-31c (n^{\circ}163)$ Z2Parameters $a (\mathring{A})$ $a (\mathring{A})$ $4.855(2)$ $c (\mathring{A})$ $15.441(7)$ Volume (\mathring{A}^3) $315.2(4)$ Molecular weight 319.04 Calculated density (g/cm ³) $3.361(4)$ Secondary extinction factor $3.9(8) 10^{-5}$ Weighting scheme $k = 1$ $w = k/(\sigma^2(F^2) + (0.0719P)^2)$ Number of refined parameters 25 Max Δ/σ -0.001 Reliability factors R_1 ; wR_2 0.047 ; 0.123 Goodness-of-fit 1.19 Max, min heights in the final differenceFourier map ($e\mathring{A}^{-3}$) $+ 2.6, -1.4$ Centering reflections ($2\Theta \approx 30^{\circ}$) 27 Reflections for refined cell parameters 27 (scans at $\pm \Theta$)Scan mode $\omega - 2\Theta$ in N steps of $\Delta \omega = 0.035^{\circ}$ $37 \le N \le 43$ Data collection range $2\Theta \le 70^{\circ}$ Aperture $4 \times 4 mm^2$ Measured reflections 2598 Minimum h, k, l ; $-7 -7 -24$;maximum h, k, l (2 independent sets) $77 24$ Standard reflections 3.0 Independent reflections ($I > 2\sigma(I)$) 436 R_{int} 0.017	A_{\min}, A_{\max}	0.303, 0.734				
Space group $P-31c (n^{\circ}163)$ Z 2Parameters $a (\mathring{A})$ $c (\mathring{A})$ $15.2(4)$ $c (\mathring{A})$ $15.2(4)$ Molecular weight 319.04 Calculated density (g/cm ³) $3.361(4)$ Secondary extinction factor $3.9(8) 10^{-5}$ Weighting scheme $k = 1$ $w = k/(\sigma^2(F^2) + (0.0719P)^2)$ Number of refined parameters 25 Max Δ/σ -0.001 Reliability factors $R_1; wR_2$ $0.047; 0.123$ Goodness-of-fit 1.19 Max, min heights in the final difference -1.4 Fourier map ($e\mathring{A}^{-3}$) $+ 2.6, -1.4$ Centering reflections ($2\Theta \approx 30^{\circ}$) 27 Reflections for refined cell parameters 27 (scans at $\pm \Theta$)Scan mode $\omega - 2\Theta$ in N steps of $\Delta\omega = 0.035^{\circ}$ $37 \le N \le 43$ Data collection range $2\Theta \le 70^{\circ}$ Aperture $4 \times 4 \text{ mm}^2$ Measured reflections 2598 Minimum $h, k, l;$ $-7 - 7 - 724;$ maximum $h, k, l (2$ independent sets) $77 24$ Standard reflections $0.25; 2 - 25; 20 - 5$ Maximum standard intensity variation 3.0 Independent reflections ($I > 2\sigma(I)$) 436	Symmetry	Trigonal				
Z2Parameters4.855(2) a (Å)15.441(7)Volume (ų)315.2(4)Molecular weight319.04Calculated density (g/cm³)3.361(4)Secondary extinction factor3.9(8) 10^{-5}Weighting scheme $k = 1$ $w = k/(\sigma^2(F^2) + (0.0719P)^2)$ Number of refined parameters25Max Δ/σ -0.001Reliability factors R_1 ; wR_2 0.047; 0.123Goodness-of-fit1.19Max, min heights in the final difference7Fourier map (eÅ $^{-3}$)+ 2.6, -1.4Centering reflections ($2\Theta \approx 30^\circ$)27Reflections for refined cell parameters27 (scans at $\pm \Theta$)Scan mode $\omega - 2\Theta$ in N steps of $\Delta\omega = 0.035^\circ$ $37 \le N \le 43$ Data collection range29 $\le 70^\circ$ Aperture4 × 4 mm²Measured reflections2598Minimum h, k, l; $-7 - 7 - 7 - 24$;maximum h, k, l (2 independent sets)7 7 24Standard reflections0.2 5; 2 - 2 5; 2 0 - 5Maximum standard intensity variation3.0Independent reflections ($I > 2\sigma(I)$)436 R_{int} 0.017	Space group	<i>P</i> -31 <i>c</i> (n°163)				
Parameters4.855(2) a (Å)15.441(7)Volume (ų)315.2(4)Molecular weight319.04Calculated density (g/cm³)3.361(4)Secondary extinction factor3.9(8) 10 ⁻⁵ Weighting scheme $k = 1$ $w = k/(\sigma^2(F^2) + (0.0719P)^2$ Number of refined parameters25Max Δ/σ -0.001Reliability factors R_1 ; wR_2 0.047; 0.123Goodness-of-fit1.19Max, min heights in the final difference70001Fourier map (eÅ ⁻³)+ 2.6, -1.4Centering reflections ($2\Theta \approx 30^\circ$)27Reflections for refined cell parameters27 (scans at $\pm \Theta$)Scan mode $\omega - 2\Theta$ in N steps of $\Delta\omega = 0.035^\circ$ 37 $\leq N \leq 43$ Data collection range29 $\leq 70^\circ$ Aperture4 × 4 mm²Measured reflections2598Minimum h, k, l;-7 -7 -7 -24;maximum h, k, l (2 independent sets)7 7 24Standard reflections0.2 5; 2 - 2 5; 2 0 - 5Maximum standard intensity variation3.0Independent reflections ($I > 2\sigma(I)$)436 R_{int} 0.017	Ζ	2				
a (Å)4.855(2) c (Å)15.441(7)Volume (Å ³)315.2(4)Molecular weight319.04Calculated density (g/cm ³)3.361(4)Secondary extinction factor3.9(8) 10 ⁻⁵ Weighting scheme $k = 1$ $w = k/(\sigma^2(F^2) + (0.0719P)^2$ Number of refined parameters25Max Δ/σ -0.001Reliability factors R_1 ; wR_2 0.047; 0.123Goodness-of-fit1.19Max, min heights in the final difference r Fourier map (eÅ ⁻³)+ 2.6, -1.4Centering reflections ($2\Theta \approx 30^\circ$)27Reflections for refined cell parameters27 (scans at $\pm \Theta$)Scan mode $\omega - 2\Theta$ in N steps of $\Delta\omega = 0.035^\circ$ $37 \le N \le 43$ Data collection range $2\Theta \le 70^\circ$ Aperture $4 \times 4 \text{ mm}^2$ Measured reflections2598Minimum h, k, l; $-7 - 7 - 724$;maximum h, k, l (2 independent sets) $77 \ 24$ Standard reflections $0.25; 2 - 25; 20 - 5$ Maximum standard intensity variation 3.0 Independent reflections ($I > 2\sigma(I)$)436 R_{int} 0.017	Parameters					
c (Å)15.441(7)Volume (Å3)315.2(4)Molecular weight319.04Calculated density (g/cm3)3.361(4)Secondary extinction factor3.9(8) 10^{-5}Weighting scheme $k = 1$ $w = k/(\sigma^2(F^2) + (0.0719P)^2$ $k = 1$ Number of refined parameters25Max Δ/σ -0.001 Reliability factors R_1 ; wR_2 0.047 ; 0.123 Goodness-of-fit 1.19 Max, min heights in the final difference r Fourier map (eÅ $^{-3}$) $+ 2.6, -1.4$ Centering reflections ($2\Theta \approx 30^{\circ}$) 27 Reflections for refined cell parameters 27 (scans at $\pm \Theta$)Scan mode $\omega - 2\Theta$ in N steps of $\Delta\omega = 0.035^{\circ}$ $37 \le N \le 43$ Data collection range $2\Theta \le 70^{\circ}$ Aperture 4×4 mm2Measured reflections 2598 Minimum h, k, l ; $-7 -7 -24$;maximum h, k, l (2 independent sets) $77 24$ Standard reflections $0.25; 2 - 25; 20 - 5$ Maximum standard intensity variation 3.0 Independent reflections ($I > 2\sigma(I)$) 436	a (Å)	4.855(2)				
Volume (ų) $315.2(4)$ Molecular weight 319.04 Calculated density (g/cm³) $3.361(4)$ Secondary extinction factor $3.9(8) 10^{-5}$ Weighting scheme $k = 1$ $w = k/(\sigma^2(F^2) + (0.0719P)^2)$ $k = 1$ Number of refined parameters 25 Max Δ/σ -0.001 Reliability factors R_1 ; wR_2 0.047 ; 0.123 Goodness-of-fit 1.19 Max, min heights in the final difference $+ 2.6, -1.4$ Fourier map (eÅ ⁻³) $+ 2.6, -1.4$ Centering reflections $(2\Theta \approx 30^{\circ})$ 27 Reflections for refined cell parameters 27 (scans at $\pm \Theta$)Scan mode $\omega - 2\Theta$ in N steps of $\Delta \omega = 0.035^{\circ}$ $37 \le N \le 43$ Data collection range $2\Theta \le 70^{\circ}$ Aperture $4 \times 4 \text{ mm}^2$ Measured reflections 2598 Minimum h, k, l; $-7 - 7 - 724$;maximum h, k, l (2 independent sets) $77 24$ Standard reflections $0.25; 2 - 25; 20 - 5$ Maximum standard intensity variation 3.0 Independent reflections ($I > 2\sigma(I)$) 436	c (Å)	15.441(7)				
Molecular weight319.04Calculated density (g/cm³) $3.361(4)$ Secondary extinction factor $3.9(8) 10^{-5}$ Weighting scheme $k = 1$ $w = k/(\sigma^2(F^2) + (0.0719P)^2)$ $k = 1$ Number of refined parameters 25 Max Δ/σ -0.001 Reliability factors R_1 ; wR_2 0.047 ; 0.123 Goodness-of-fit 1.19 Max, min heights in the final difference $+ 2.6, -1.4$ Fourier map (eÅ ⁻³) $+ 2.6, -1.4$ Centering reflections ($2\Theta \approx 30^\circ$) 27 Reflections for refined cell parameters 27 (scans at $\pm \Theta$)Scan mode $\omega - 2\Theta$ in N steps of $\Delta\omega = 0.035^\circ$ $37 \le N \le 43$ Data collection range $2\Theta \le 70^\circ$ Aperture $4 \times 4 \text{ mm}^2$ Measured reflections 2598 Minimum h, k, l; $-7 - 7 - 724$;maximum h, k, l (2 independent sets) $77 24$ Standard reflections $0.25; 2 - 25; 20 - 5$ Maximum standard intensity variation 3.0 Independent reflections ($I > 2\sigma(I)$) 436	Volume (Å ³)	315.2(4)				
Calculated density (g/cm³) $3.361(4)$ Secondary extinction factor $3.9(8) \ 10^{-5}$ Weighting scheme $k = 1$ $w = k/(\sigma^2(F^2) + (0.0719P)^2)$ 25 Number of refined parameters 25 Max Δ/σ -0.001 Reliability factors R_1 ; wR_2 0.047 ; 0.123 Goodness-of-fit 1.19 Max, min heights in the final difference $+ 2.6, -1.4$ Fourier map (eÅ ⁻³) $+ 2.6, -1.4$ Centering reflections $(2\Theta \approx 30^\circ)$ 27 Reflections for refined cell parameters $27 \ (scans at \pm \Theta)$ Scan mode $\omega - 2\Theta$ in N steps of $\Delta \omega = 0.035^\circ$ $37 \le N \le 43$ Data collection range $2\Theta \le 70^\circ$ Aperture $4 \times 4 \ mm^2$ Measured reflections 2598 Minimum h, k, l; $-7 - 7 - 24$;maximum h, k, l (2 independent sets) $77 \ 24$ Standard reflections $0.25; 2 - 25; 20 - 5$ Maximum standard intensity variation 3.0 Independent reflections ($I > 2\sigma(I)$) 436	Molecular weight	319.04				
Secondary extinction factor $3.9(8) \ 10^{-5}$ Weighting scheme $k = 1$ $w = k/(\sigma^2(F^2) + (0.0719P)^2)$ 25Number of refined parameters25Max Δ/σ -0.001 Reliability factors R_1 ; wR_2 0.047 ; 0.123 Goodness-of-fit 1.19 Max, min heights in the final difference $+ 2.6, -1.4$ Fourier map ($eÅ^{-3}$) $+ 2.6, -1.4$ Centering reflections $(2\Theta \approx 30^{\circ})$ 27Reflections for refined cell parameters27 (scans at $\pm \Theta$)Scan mode $\omega - 2\Theta$ in N steps of $\Delta\omega = 0.035^{\circ}$ $37 \le N \le 43$ Data collection range $2\Theta \le 70^{\circ}$ Aperture $4 \times 4 \text{ mm}^2$ Measured reflections 2598 Minimum $h, k, l;$ $-7 - 7 - 7 - 24;$ maximum h, k, l (2 independent sets) $0 \ge 5; 2 - 2 \le 20 - 5$ Maximum standard intensity variation 3.0 Independent reflections $(I > 2\sigma(I))$ 436	Calculated density (g/cm ³)	3.361(4)				
Weighting scheme $k = 1$ $w = k/(\sigma^2(F^2) + (0.0719P)^2)$ 25Number of refined parameters25Max Δ/σ -0.001 Reliability factors R_1 ; wR_2 0.047 ; 0.123 Goodness-of-fit1.19Max, min heights in the final difference $+ 2.6, -1.4$ Fourier map ($eÅ^{-3}$) $+ 2.6, -1.4$ Centering reflections $(2\Theta \approx 30^{\circ})$ 27Reflections for refined cell parameters27 (scans at $\pm \Theta$)Scan mode $\omega - 2\Theta$ in N steps of $\Delta \omega = 0.035^{\circ}$ $37 \le N \le 43$ Data collection range $2\Theta \le 70^{\circ}$ Aperture $4 \times 4 \text{ mm}^2$ Measured reflections 2598 Minimum h, k, l ; $-7 - 7 - 24$;maximum h, k, l (2 independent sets) $7 7 24$ Standard reflections $0 2 5; 2 - 2 5; 20 - 5$ Maximum standard intensity variation 3.0 Independent reflections ($I > 2\sigma(I)$) 436 R_{int} 0.017	Secondary extinction factor	$3.9(8) \ 10^{-5}$				
$w = k/(\sigma^2(F^2) + (0.0719P)^2)$ Number of refined parameters25Max Δ/σ -0.001 Reliability factors R_1 ; wR_2 0.047 ; 0.123 Goodness-of-fit 1.19 Max, min heights in the final difference $+ 2.6, -1.4$ Fourier map ($eÅ^{-3}$) $+ 2.6, -1.4$ Centering reflections $(2\Theta \approx 30^\circ)$ 27Reflections for refined cell parameters27 (scans at $\pm \Theta$)Scan mode $\omega - 2\Theta$ in N steps of $\Delta \omega = 0.035^\circ$ $37 \le N \le 43$ Data collection range $2\Theta \le 70^\circ$ Aperture $4 \times 4 \text{ mm}^2$ Measured reflections 2598 Minimum h, k, l ; $-7 - 7 - 24$;maximum h, k, l (2 independent sets) $7 7 24$ Standard reflections $0 2 5; 2 - 2 5; 20 - 5$ Maximum standard intensity variation 3.0 Independent reflections ($I > 2\sigma(I)$) 436 R_{int} 0.017	Weighting scheme	k = 1				
Number of refined parameters25Max Δ/σ -0.001 Reliability factors R_1 ; wR_2 0.047 ; 0.123 Goodness-of-fit 1.19 Max, min heights in the final difference Fourier map ($eÅ^{-3}$) $+ 2.6, -1.4$ Centering reflections $(2\Theta \approx 30^{\circ})$ 27 Reflections for refined cell parameters 27 (scans at $\pm \Theta$)Scan mode $\omega - 2\Theta$ in N steps of $\Delta \omega = 0.035^{\circ}$ $37 \le N \le 43$ Data collection range $2\Theta \le 70^{\circ}$ Aperture $4 \times 4 \text{ mm}^2$ Measured reflections 2598 Minimum h, k, l; $-7 - 7 - 24$;maximum h, k, l (2 independent sets) $7 7 24$ Standard reflections $0.25; 2 - 25; 20 - 5$ Maximum standard intensity variation 3.0 Independent reflections ($I > 2\sigma(I)$) 436	$w = k/(\sigma^2(F^2) + (0.0719P)^2)$					
Max Δ/σ -0.001 Reliability factors R_1 ; wR_2 0.047 ; 0.123 Goodness-of-fit 1.19 Max, min heights in the final difference Fourier map ($eÅ^{-3}$) $+ 2.6, -1.4$ Centering reflections $(2\Theta \approx 30^{\circ})$ 27 Reflections for refined cell parameters 27 (scans at $\pm \Theta$)Scan mode $\omega - 2\Theta$ in N steps of $\Delta \omega = 0.035^{\circ}$ $37 \le N \le 43$ Data collection range $2\Theta \le 70^{\circ}$ Aperture $4 \times 4 \text{ mm}^2$ Measured reflections 2598 Minimum h, k, l; $-7 - 7 - 24$;maximum h, k, l (2 independent sets) $7 7 24$ Standard reflections $0 2 5; 2 - 2 5; 20 - 5$ Maximum standard intensity variation 3.0 Independent reflections ($I > 2\sigma(I)$) 436 R_{int} 0.017	Number of refined parameters	25				
Reliability factors R_1 ; wR_2 0.047 ; 0.123 Goodness-of-fit 1.19 Max, min heights in the final difference Fourier map ($eÅ^{-3}$) $+ 2.6, -1.4$ Centering reflections $(2\Theta \approx 30^{\circ})$ 27 Reflections for refined cell parameters 27 (scans at $\pm \Theta$)Scan mode $\omega - 2\Theta$ in N steps of $\Delta \omega = 0.035^{\circ}$ $37 \le N \le 43$ Data collection range $2\Theta \le 70^{\circ}$ Aperture $4 \times 4 \text{ mm}^2$ Measured reflections 2598 Minimum h, k, l; $-7 - 7 - 24$;maximum h, k, l (2 independent sets) $7 7 24$ Standard reflections $0 2 5; 2 - 2 5; 20 - 5$ Maximum standard intensity variation 3.0 Independent reflections ($I > 2\sigma(I)$) 436 R_{int} 0.017	Max Δ/σ	-0.001				
Goodness-of-fit1.19Max, min heights in the final difference Fourier map ($e^{A^{-3}}$)+ 2.6, -1.4Centering reflections ($2\Theta \approx 30^{\circ}$)27Reflections for refined cell parameters27 (scans at $\pm \Theta$)Scan mode $\omega - 2\Theta$ in N steps of $\Delta \omega = 0.035^{\circ}$ $37 \le N \le 43$ Data collection range $2\Theta \le 70^{\circ}$ Aperture $4 \times 4 \text{ mm}^2$ Measured reflections2598Minimum h, k, l; $-7 - 7 - 24$;maximum h, k, l (2 independent sets)7 7 24Standard reflections3.0Independent reflections ($I > 2\sigma(I)$)436 R_{int} 0.017	Reliability factors R_1 ; wR_2	0.047; 0.123				
Max, min heights in the final difference Fourier map (eA^{-3})+ 2.6, -1.4Centering reflections ($2\Theta \approx 30^{\circ}$)27Reflections for refined cell parameters27 (scans at $\pm \Theta$)Scan mode $\omega - 2\Theta$ in N steps of $\Delta \omega = 0.035^{\circ}$ $37 \le N \le 43$ Data collection range $2\Theta \le 70^{\circ}$ Aperture $4 \times 4 \text{ mm}^2$ Measured reflections2598Minimum h, k, l; $-7 - 7 - 24$;maximum h, k, l (2 independent sets)7 7 24Standard reflections $0 \ge 5; 2 - 2 \le 20 - 5$ Maximum standard intensity variation 3.0 Independent reflections ($I > 2\sigma(I)$) 436 R_{int} 0.017	Goodness-of-fit	1.19				
Fourier map (eA^{-3}) $+ 2.6, -1.4$ Centering reflections ($2\Theta \approx 30^{\circ}$)27Reflections for refined cell parameters27 (scans at $\pm \Theta$)Scan mode $\omega - 2\Theta$ in N steps of $\Delta \omega = 0.035^{\circ}$ $37 \le N \le 43$ Data collection range $2\Theta \le 70^{\circ}$ Aperture $4 \times 4 \text{ mm}^2$ Measured reflections2598Minimum h, k, l; $-7 - 7 - 24$;maximum h, k, l (2 independent sets)7 7 24Standard reflections $0 \ge 5; 2 - 2 \le 20 - 5$ Maximum standard intensity variation 3.0 Independent reflections ($I > 2\sigma(I)$) 436 R_{int} 0.017	Max, min heights in the final difference					
Centering reflections $(2\Theta \approx 30^{\circ})$ 27Reflections for refined cell parameters27 (scans at $\pm \Theta$)Scan mode $\omega - 2\Theta$ in N steps of $\Delta \omega = 0.035^{\circ}$ $37 \le N \le 43$ Data collection range $2\Theta \le 70^{\circ}$ Aperture $4 \times 4 \text{ mm}^2$ Measured reflections2598Minimum h, k, l; $-7 - 7 - 24$;maximum h, k, l (2 independent sets) $7 7 24$ Standard reflections $0 2 5; 2 - 2 5; 20 - 5$ Maximum standard intensity variation 3.0 Independent reflections ($I > 2\sigma(I)$) 436 R_{int} 0.017	Fourier map (eÅ ⁻³)	+2.6, -1.4				
Reflections for refined cell parameters $27 \text{ (scans at } \pm \Theta)$ Scan mode $\omega - 2\Theta$ in N steps of $\Delta \omega = 0.035^{\circ}$ $37 \le N \le 43$ Data collection range $2\Theta \le 70^{\circ}$ Aperture $4 \times 4 \text{ mm}^2$ Measured reflections 2598 Minimum h, k, l; $-7 - 7 - 24$;maximum h, k, l (2 independent sets) $7 7 24$ Standard reflections $0 2 5; 2 - 2 5; 20 - 5$ Maximum standard intensity variation 3.0 Independent reflections (I > $2\sigma(I)$) 436 R_{int} 0.017	Centering reflections ($2\Theta \approx 30^\circ$)	27				
$ \begin{array}{ll} \mbox{Scan mode } \omega - 2\Theta \mbox{ in } N \mbox{ steps of } \Delta \omega = 0.035^\circ & 37 \le N \le 43 \\ \mbox{Data collection range} & 2\Theta \le 70^\circ \\ \mbox{Aperture} & 4 \times 4 \mbox{ mm}^2 \\ \mbox{Measured reflections} & 2598 \\ \mbox{Minimum } h, k, l; & -7 \ -7 \ -24; \\ \mbox{maximum } h, k, l \mbox{ (2 independent sets)} & 7 \ 7 \ 24 \\ \mbox{Standard reflections} & 0 \ 2 \ 5; \ 2 \ -2 \ 5; \ 2 \ 0 \ -5 \\ \mbox{Maximum standard intensity variation} & 3.0 \\ \mbox{Independent reflections} \ (I > 2\sigma(I)) & 436 \\ \mbox{R}_{int} & 0.017 \\ \end{array} $	Reflections for refined cell parameters	27 (scans at $\pm \Theta$)				
Data collection range $2\Theta \le 70^{\circ}$ Aperture $4 \times 4 \text{ mm}^2$ Measured reflections 2598 Minimum h, k, l; $-7 - 7 - 24$;maximum h, k, l (2 independent sets) $7 7 24$ Standard reflections $0 2 5; 2 - 2 5; 20 - 5$ Maximum standard intensity variation 3.0 Independent reflections ($I > 2\sigma(I)$) 436 R_{int} 0.017	Scan mode $\omega - 2\Theta$ in N steps of $\Delta \omega = 0.035^{\circ}$	$37 \le N \le 43$				
Aperture $4 \times 4 \text{ mm}^2$ Measured reflections 2598 Minimum h, k, l; $-7 - 7 - 24$;maximum h, k, l (2 independent sets) $7 7 24$ Standard reflections $0 2 5; 2 - 2 5; 20 - 5$ Maximum standard intensity variation 3.0 Independent reflections ($I > 2\sigma(I)$) 436 R_{int} 0.017	Data collection range	$2\Theta \le 70^{\circ}$				
Measured reflections2598Minimum $h, k, l;$ $-7 - 7 - 24;$ maximum h, k, l (2 independent sets) $7 7 24$ Standard reflections $0 2 5; 2 - 2 5; 2 0 - 5$ Maximum standard intensity variation 3.0 Independent reflections $(I > 2\sigma(I))$ 436 R_{int} 0.017	Aperture	$4 \times 4 \text{ mm}^2$				
Minimum $h, k, l;$ $-7 - 7 - 24;$ maximum h, k, l (2 independent sets) $7 7 24$ Standard reflections $0 2 5; 2 - 2 5; 2 0 - 5$ Maximum standard intensity variation 3.0 Independent reflections $(I > 2\sigma(I))$ 436 R_{int} 0.017	Measured reflections	2598				
maximum h, k, l (2 independent sets)7 7 24Standard reflections $0 2 5; 2 - 2 5; 2 0 - 5$ Maximum standard intensity variation 3.0 Independent reflections $(I > 2\sigma(I))$ 436 R_{int} 0.017	Minimum $h, k, l;$	-7 -7 -24;				
Standard reflections $0 \ 2 \ 5; \ 2 \ -2 \ 5; \ 2 \ 0 \ -5$ Maximum standard intensity variation 3.0 Independent reflections ($I > 2\sigma(I)$) 436 R_{int} 0.017	maximum h, k, l (2 independent sets)	7724				
Maximum standard intensity variation 3.0 Independent reflections $(I > 2\sigma(I))$ 436 R_{int} 0.017	Standard reflections	0 2 5; 2 -2 5; 2 0 -5				
Independent reflections $(I > 2\sigma(I))$ 436 $R_{\rm int}$ 0.017	Maximum standard intensity variation	3.0				
R _{int} 0.017	Independent reflections $(I > 2\sigma(I))$	436				
	R _{int}	0.017				

TABLE 1

An optical second-harmonic generation test was performed by the Kurtz–Perry method (24) on a polycrystalline sample of $Na_2Ga_2(BO_3)_2O$ using the 1.06-µm line of a YAG: Nd³⁺ laser. No signal was detected.

The thermal characterizations of $Na_2Al_2(BO_3)_2O$ and $Na_2Ga_2(BO_3)_2O$ were performed by coupled TGA–DTA under argon flow (TA Instruments SDT 2960, heating rate 10°C/min, temperature range 30–1200°C). On heating, only an endothermic peak, corresponding to the melting, can be observed. A large hysteresis for recrystallisation occurs on cooling (Table 5).

The IR spectrum, realized on an ATI MATTSON Genesis series FTIR apparatus, is consistent with the presence of borate groups BO_3^{3-} (lines between 700 and 1250 cm⁻¹) (25).

STRUCTURE DETERMINATION

The structure determination was performed on Na₂Ga₂(BO₃)₂O. Reflection conditions ($hh\overline{2}hl$: l = 2n) lead

 TABLE 2

 Atomic Coordinates and Temperature Factors in

 Na2Ga2(BO3)2O

Atom	Site	x	у	Ζ	SOF	$B_{\rm eq}$ [Å ²]	-
Ga	4f	1/3	2/3	0.63835(4)	1	1.26(2)	
Na(1)	2b	0	0	0	1	1.78(6)	
Na(2)	2a	0	0	1/4	1	3.7(1)	
O(1)	12i	0.9523(7)	0.6113(8)	0.8946(4)	1	4.3(1)	
O(2)	6h	-0.409(2)	0.409(2)	1/4	1/3	3.4(3)	
В	4f	1/3	2/3	0.1031(6)	1	$2.2(1)^{a}$	
	/8	π^2					-

Note.
$$B_{eq} = \left(\frac{8\pi^2}{3}\right) \sum_i \sum_j U_{ij} a_i^* a_j^* a_i a_j$$
 (26)

to the centric $P\overline{3}1c$ (n°163) and acentric P31c (n°159) space groups. The $P\overline{3}1c$ space group was selected for the structure solution. The starting set of atomic coordinates was obtained from the analysis of the Patterson map (Patt option of the SHELXS-86 program). One gallium and two sodium were located respectively on 4f, 2a, and 2b crystallographic sites ($R_1 = 0.204$, with SHELXL-93 refinement program). The positions of boron and oxygen were given by successive refinements and difference Fourier syntheses (SHELXL-93). A statistic disorder, probably correlated with the twinning of the crystals, was observed for oxygen O(2); the site occupation factor (SOF) was refined to 1/3. Secondary extinction and anisotropic or isotropic (boron atoms) thermal parameters were refined, and the final residuals decreased to $R_1 = 0.047$ (w $R_2 = 0.123$). The results are not improved in the P31c space group.

The atomic coordinates and temperature factors are reported in Table 2, the anisotropic displacement parameters are given in Table 3, and the selected interatomic distances are listed in Table 4.

STRUCTURE DESCRIPTION

In the crystal structure of $Na_2Ga_2(BO_3)_2O$, Ga^{3+} cations reside on distorted tetrahedral sites while sodium

 TABLE 3

 Anisotropic Displacement Parameters in Na2Ga2(BO3)2O

Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
Ga	0.0135(3)	0.0135(3)	0.0209(4)	0	0	0.0067(2)
Na(1)	0.019(1)	0.019(1)	0.030(2)	0	0	0.009(1)
Na(2)	0.036(2)	0.036(2)	0.067(4)	0	0	0.018(1)
O(1)	0.008(1)	0.014(1)	0.139(5)	-0.014(2)	0.004(2)	0.004(1)
O(2)	0.060(8)	0.060(8)	0.020(4)	-0.008(6)	-0.008(6)	0.036(9)

Note. The anisotropic temperature factor expression is $T = \exp \left[-2\pi^2((ha^*)^2 U_{11} + \dots + 2hka^*b^* U_{12})\right]$ (26).

Selected Interatomic Distan Na ₂ Ga ₂ (B	ces (A) and Angles (°) in BO ₃) ₂ O				
Ga polyh	edron				
$3 \times \text{Ga-O}(1)$	1.805(3)				
$1 \times \text{Ga-O}(2)$	1.836(6)				
$\langle Ga-O \rangle =$	= 1.81 Å				
Na(1) polyhedron	Na(2) polyhedron				
$6 \times \text{Na-O}(1) = 2.414(4)$	$2 \times \text{Na-O}(2) = 2.547(6)$				
$\langle Na(1)-O \rangle = 2.414 \text{ Å}$	$6 \times \text{Na-O(1)}$ 2.858(5)				
	$\langle Na(2)-O \rangle = 2.78 \text{ Å}$				
Borate BO_3^{3-} ion					
$3 \times B - O(1)$	1.369(3)				
$3 \times O(1) - B - O(1)$) 119.93(4)				
	, , , , , , , , , , , , , , , , , , ,				

cations $Na(1)^+$ and $Na(2)^+$ are sixfold (regular octahedron)

and eightfold (bicapped octahedron (3+2+3)) coordinated

respectively. The mean metal-oxygen distances found in

GaO₄ tetrahedra ($\langle Ga-O \rangle = 1.81 \text{ Å}$) and Na(1)O₆ oc-

tahedra ($\langle Na(1)-O \rangle = 2.414$ Å) are in agreement with the

sum of ionic radii given by Shannon (27): Ga³⁺ (0.47 Å),

 Na^+ (1.02 Å in coordination VI), and O^{2-} (1.35 Å). In

contrast, the distance $\langle Na(2)-O \rangle = 2.78$ Å is clearly longer

than the expected value, 2.53 Å (Na⁺:1.18 Å in coordination

VIII). The corresponding polyhedra are distorted along the

TABLE 4

TABLE 5Cell Parameters, Melting (T_f) , and Recrystallization (T_r) Pointsof Na₂ M_2 (BO₃)₂O (M = Al, Ga)

	a (Å)	c (Å)	$V(Å^3)$	$R_{M^{3+}}(\text{\AA})^a$	$T_{\rm f}$ (°C)	$T_{\rm r}$ (°C)
$\frac{\text{Na}_2\text{Al}_2(\text{BO}_3)_2\text{O}}{\text{Na}_2\text{Ga}_2(\text{BO}_3)_2\text{O}}$	4.802(7)	15.29(4)	305.2(9)	0.39	1005	905
	4.855(2)	15.441(7)	315.2(4)	0.47	880	800

^{*a*} Values from Ref. (27).

c axis. Boron atoms adopt a triangular coordination. The mean B–O distance, 1.37 Å, is close to that found generally in borates: Na₂Gd₂(BO₃)₂O (1.38 Å) (10), K₂Ga₂(BO₃)₂O (1.37 Å) (28), and Ca₄Gd(BO₃)₃O (1.38 Å) (8).

Two GaO₄ polyhedra, up and down, are connected by O(2) in order to form bitetrahedral entities $[Ga_2O(1)_6 O(2)_{2/2}]$ (Fig. 1). The axis $\overline{3}$ involves a rotation of their O(1)₃ bases.

Borate ions define dense layers of flat-lying triangles parallel to the (a, b) plane. In a previous paper (11), we described the stacking of borate layers using (A, B, C) letters, indicative of the relative shift of the layers, and (+) or (-) symbols, associated with the orientation of B–O bonds. This notation is applied to Na₂Ga₂(BO₃)₂O and the stacking is /A(+)/A(-)/B(+)/B(-)/. Ga₂O₇ dimers and BO₃³⁻ triangles share O(1) corners and create cavities occupies by Na(2)⁺. They build up infinite sheets [NaGa₂B₂O₇]_∞ of

FIG. 1. Perspective view of $Na_2Ga_2(BO_3)_2O$. The statistic occupation of O(2) site is materialized by an ellipse.

Compound	a (Å)	c (Å)	Space group	Sheet formulation (thickness in Å)	Stacking of borate layers	References
$Na_2Ga_2(BO_3)_2O$	4.855(2)	15.441(7)	<i>P</i> -31 <i>c</i> (n°163)	$[NaGa_2B_2O_7]_{\infty}$ (4.5)	/A(+)/A(-)/B(+)/B(-)/	This work
$Sr_2Be_2(BO_3)_2O$	4.683(3)	15.311(7)	<i>P</i> -6 <i>c</i> 2 (n°188)	$[SrBe_2B_2O_7]_{\infty}$ (3.9)	/A(+)/A(+)/A(-)/A(-)/	(13)
$CaAl_2(BO_3)_2O$	4.810(6)	46.633(5)	<i>R</i> -3 <i>c</i> (n°167)	$[[]Al_2B_2O_7]_{\infty}$ (4.7)	/A(+)/B(+)/C(-)/A(-)/B(+)/C(+)/	(14)
					A(-)/B(-)/C(+)/A(+)/B(-)/C(-)/	
SrAl ₂ (BO ₃) ₂ O	4.893(1)	47.78(1)	<i>R</i> -3 <i>c</i> (n°167)	$[[]Al_2B_2O_7]_{\infty} (4.7)$	/A(+)/B(+)/C(-)/A(-)/B(+)/C(+)/	(16)
					A(-)/B(-)/C(+)/A(+)/B(-)/C(-)/	
BaAl ₂ (BO ₃) ₂ O	5.001(2)	24.378(3)	R32 (n°155)	$[]Al_2B_2O_7]_{\infty}$ (4.8)	/A(+)/B(+)/C(+)/A(+)/B(+)/C(+)/	(17)

 TABLE 6

 Structural Comparison of Oxyborates with Na₂Ga₂(BO₃)₂O

thickness 4.5 Å, related by the symmetry center. These sheets are separated along the *c* axis by infinite planes of $Na(1)^+$.

STRUCTURAL CORRELATIONS

It is interesting to compare the structure of $Na_2Ga_2(BO_3)_2O$ and those of other oxyborates: $Sr_2Be_2(BO_3)_2O$ (SBBO) (13), and $AAl_2(BO_3)_2O$ (A = Ca (14), Sr (16), Ba (17)). All these compounds exhibit $[M_2B_2O_7]_{\infty}$ (M = Be, Al, and Ga) sheets. Their arrangement can be either noncentrosymmetric, in SBBO, or centrosymmetric in aluminum and gallium borates. In $BaAl_2(BO_3)_2O$ (15), the noncentrosymmetric character is

due to the rotation of the tetrahedra which constitute the dimeric units $[Al_2O_7]$. As a consequence, within a $[M_2B_2O_7]_{\infty}$ sheet, two different layers of boron atoms (A/B, C/A, or B/C) instead of one (A/A or B/B) in Na₂Ga₂(BO₃)₂O and SBBO can be distinguished (Table 6). The difference in stacking of the $[M_2B_2O_7]_{\infty}$ layers induces a modification of the coordination: Na(1)O₆ or AO_6 (A = Ca, Sr) octahedra in Na₂Ga₂(BO₃)₂O (Fig. 1) or CaAl₂(BO₃)₂O and SrAl₂(BO₃)₂O, or AO_6 (A = Sr, Ba) trigonal prisms in Sr₂Be₂(BO₃)₂O (Fig. 2) or BaAl₂ (BO₃)₂O.

The mean plane of bitetrahedral entities M_2O_7 which contains the apical O(2) atoms can be filled with alkaline or alkaline–earth cations $(Na_2Ga_2(BO_3)_2O \text{ or}$

FIG. 2. Perspective view of $Sr_2Be_2(BO_3)_2O$.

FIG. 3. Perspective view of SiP₂O₇ (a) and projection, along the *c* axis, of the layers of TO_4 tetrahedra (T = P, Ga) and AO_6 octahedra (A = Si, Na) found in SiP₂O₇ (b) and Na₂Ga₂(BO₃)₂O (c).

 $Sr_2Be_2(BO_3)_2O$ and with lone pairs $(Tl_4V_2O_7 (29) \text{ or } K_2Al_2Sb_2O_7 (30))$ or can be lacunar $(CaAl_2(BO_3)_2O, SrAl_2(BO_3)_2O, \text{ or } BaAl_2(BO_3)_2O)$ (Table 6).

Moreover, the structural arrangement of Ga_2O_7 entities and Na(1)O₆ octahedra in Na₂Ga₂(BO₃)₂O can be compared with that found in the hexagonal form of the diphosphate SiP₂O₇ (18). This structure is built up from infinite sheets of P₂O₇ dimers separated along the *c* axis by layers of SiO₆ octahedra. A perspective view of the SiP₂O₇ structure is given in Fig. 3a. In this structure type, alternating rotations ($\alpha_r \approx 17^\circ$) of the octahedra and tetrahedra around the threefold axis (Fig. 3b) lead to triangles of oxygen atoms. In Na₂Ga₂(BO₃)₂O, these sites are occupied by boron atoms (Fig. 3c).

It is worthy of note that Na₂Ga₂(BO₃)₂O and calcite CaCO₃ (31) present similar sheets of octahedra, Na(1)O₆ or CaO₆, and triangular entities, BO₃³⁻ or CO₃²⁻, but the most interesting structural feature of this new oxyborate concerns the presence of $[NaM_2O_7]_{\infty}$ sheets similar to that found in β -alumina (32). In this last compound, ionic conductivity is ensured by the motion of Na⁺ ions via a statistical occupancy of several crystallographic sites of NaO planes (33, 34).

CONCLUSION

A new oxyborate $Na_2Ga_2(BO_3)_2O$ is evidenced. The synthesis is achieved by solid state reaction. The structure is

determined by X-ray diffraction from a crystal which is probably twinned. The true cell symmetry is probably lower than trigonal, and high-resolution powder X-ray diffraction is needed in order to evidence the structural distorsion. $Na_2Al_2(BO_3)_2O$ is isostructural with the gallium phase.

The three-dimensional framework is based on double borate layers connected by Ga_2O_7 dimers. They form infinite sheets in which and between which sodium cations are located.

The presence of Na⁺ planes, the observation of highly anisotropic displacement parameters for Na(2) and O(1) atoms, and the structural similarity with β -alumina suggest that ionic conductivity can be expected in Na₂Ga₂(BO₃)₂O. These properties are investigated by impedance measurements and NMR spectroscopy; the results will be presented in a forthcoming paper.

ACKNOWLEDGMENT

The authors thank Dr. P. Aschehoug (LCAES, ENSC Paris) for the SHG test.

REFERENCES

- 1. Y. Xia, Adv. Mater. 6, 510 (1994).
- 2. P. Becker, Adv. Mater. 10 (13), 979 (1998).
- 3. D. A. Keszler, Curr. Opin. Solid State Mater. Sci. 4, 155 (1999).
- 4. C. Chen, B. Wu, A. Jiang, and G. You, Sci. Sinica B 28, 235 (1985).

- C. Chen, Y. Wu, A. Jiang, B. Wu, G. You, R. Li, and S. Lin, J. Opt. Soc. Am. B 6, 616 (1989).
- 6. T. Y. Fan and R. L. Byer, IEEE J. Quant. Electr. 24, 895 (1988).
- 7. T. U. Jm and D. A. Keszler, Mater. Res. Bull. 30, 209 (1995).
- G. Aka, A. Kahn-Harari, D. Vivien, J.-M. Benitez, F. Salin, and J. Godard, *Eur. J. Solid State Inorg. Chem.* 33, 727 (1996).
- 9. G. Corbel, R. Retoux, and M. Leblanc, J. Solid State Chem. 139, 52 (1998).
- G. Corbel, E. Antic-Fidancev, M. Lemaître-Blaise, and M. Leblanc, J. Solid State Chem. 144, 35 (1999).
- G. Corbel, E. Suard, J. Emery, and M. Leblanc, J. Alloys Compd. 305, 49 (2000).
- P. F. Rza-Zade, S. G. Guseinova, K. L. Ganf, G. K. Abdullaev, and F. R. Samedov, *Inorg. Mater.* 7, 1135 (1971).
- C. Chen, Y. Wang, B. Wu, K. Wu, W. Zeng, and Y. Linhua, *Nature* 373, 322 (1995).
- 14. K. S. Chang and D. A. Keszler, Mater. Res. Bull. 33, 299 (1998).
- 15. D. A. Keszler, Curr. Opin. Solid State Mater. Sci. 1, 204 (1996).
- F. Lucas, S. Jaulmes, M. Quarton, T. Le Mercier, F. Guillen, and C. Fouassier, J. Solid State Chem. 150, 404 (2000).
- N. Ye, W. R. Zeng, B. C. Wu, X. Y. Huang, and C. T. Chen, Z. Kristallogr. NCS 213, 452 (1998).
- D. M. Poojary, R. B. Borade, F. L. Campbell III, and A. Clearfield, J. Solid State Chem. 112, 106 (1994).
- 19. "International Tables for X-ray Crystallography," Vol. IV. Kynoch Press, Birmingham, 1968.

- G. M. Sheldrick, SHELX-76: Program for Crystal Structure Determination. Cambridge Univ. Press, Cambridge 1976.
- G. M. Sheldrick, *in* "Crystallographic Computing 3" (G. M. Sheldrick, C. Krüger, and R. Goddard, Eds.), p. 175. Oxford Univ. Press, Oxford, 1985.
- G. M. Sheldrick, SHELXL-93, A Program for Crystal Structure Determination, University of Göttingen, 1993.
- G. Bergerhoff, Diamond "Visual Crystal Structure Information System." Gerhard-Domagk-Str. 1, 53121 Bonn, Germany, 1996.
- 24. S. K. Kurtz and T. T. Perry, J. Appl. Phys. 39, 3798 (1968).
- K. Nakamoto, "Infrared and Raman Spectra of Inorganic and Coordination Compounds," Part A, fifth ed. Wiley–Interscience, New York, 1997.
- B. T. M. Willis and A. W. Pryor, "Thermal Vibrations in Crystallography," Cambridge Univ. Press, Cambridge, 1975.
- 27. R. D. Shannon, Acta Crystallogr. Sect. A 32, 751 (1976).
- R. W. Smith, M. A. Kennard, and M. J. Dudik, *Mater. Res. Bull.* 32, 649 (1997).
- A. Jouanneaux, O. Joubert, M. Evain, and M. Ganne, *Powder Diffract*. 7, 206 (1992).
- 30. C. Hirschle and C. Röhr, Acta Crystallogr. Sect. C 56, 5 (2000).
- H. Effenberger, K. Mereiter, and J. Zemann, Z. Kristallogr. 156, 233 (1981).
- 32. G. Yamaguchi and K. Suzuki, Bull. Chem. Soc. Jpn. 41, 93 (1968).
- 33. G. Aka, *Thesis* Paris, 1988.
- 34. A. Kahn-Harari, G. Aka, and J. Thery, J. Solid State Chem. 91, 71 (1991).